
ZeptoN Programming Language
White Paper

MAY 2022

ZeptoN White Paper

May 2022 Page of 2 2

ZeptoN White Paper

ZeptoN: Putting Program into Java

1. Introduction 5

2. ZeptoN Features 8

3. The Program Entity 11

4. ZeptoN Runtime 16

5. Example Programs 20

6. Future of ZeptoN 39

7. Grammar 40

8. References 41

9. Predefined Environment 42

Get the ZeptoN Compiler 45

About the Author 46

Copyright 47

License 47

Credits 49

May 2022 Page of 3 49

ZeptoN White Paper

May 2022 Page of 4 49

ZeptoN White Paper

1. Introduction

The ZeptoN programming language “Zep” is a programming language that is based
on Java syntax, and compiles to a Java bytecode .class file. But unlike Java, ZeptoN is
easy to use and learn, which is the primary purpose of the programming language.

ZeptoN is an imperative-type programming language that generates bytecode to run
on the JVM (Java Virtual Machine) and thus it can be used anywhere Java is used
today.

1.1 Motivation

The motive for developing and creating the ZeptoN programming language is to
create a language that a user can focus on packages and libraries to *do* something,
and not always create a class, prototype, or interface, unless you need or want to in
writing the code.

Graham states as one of his points [Grah 2001] is that "Design for Yourself and Your
Friends." This is what I have done with ZeptoN, but rather than starting from scratch, I
leveraged the existing language Java to have existing syntax to use. Graham further
explains [Grah 2001]:

"If you look at the history of programming languages, a lot of the best
ones were languages designed for their own authors to use, and a lot of
the worst ones were designed for other people to use."

Once in college, I e-mailed the creator of C++, Bjarne Stroustrup, with a question
about the maxim "Everything is an object," in the object-oriented paradigm and such
programming languages. Stroustrup responded that everything can be a class, or is a
class. I disagree, but in programming languages especially Java, everything is a class—
which can be quite tedious.

May 2022 Page of 5 49

ZeptoN White Paper

Thus I wanted a language with a program, but also one that I can leverage and use
existing infrastructure to avoid re-creating the wheel for a completely new
programming language. Thus I created the ZeptoN programming language. Voila!…
or Quod Erat Demonstrandum.

1.2 Users

There are two types of users of the ZeptoN programming language envisioned by its
creator:

1. Newb - “newbie” learning to program and write code
2. Coder - an experienced practitioner in programming

These two types of users seem extreme on the opposite ends of the continuum, but
paradoxically, ZeptoN is idyllic for both kinds of users, and those in the middle of the
continuum.

1.2.1 Newb

A "Newb" or “Noob” is a newbie, a person learning to program, or learning to
program in a C-style syntax programming language. A developer experienced in
Pascal, Ada, or FORTRAN is an example is a newb to ZeptoN, and can focus on
learning syntax and statements without the complexity of the object, class, and other
object-oriented concepts and abstractions. A student in school, university, or in-
company training would be a “Newb” learning to program.

May 2022 Page of 6 49

ZeptoN White Paper

1.2.2 Coder

The coder is experienced and with C-syntax style languages such as C, C++, or C#
but wants to learn the Java packages and libraries. A coder also wants to be able to
write a quick-and-dirty program using Java packages and libraries without the tedium
of creating a class, constructors, etc. A data engineer might want to easily write a
quick, simple ZeptoN program using some Java statistical packages.

1.2.3 Get It Done

ZeptoN is a programming language that is meant to get things done. While a
complex object-oriented design pattern is nice in a library, sometimes the end source
code that is written is simply trying to achieve a result or object, quickly and efficiently.

Paul Graham [Grah 2001] makes a point “A programming language has to be good
for writing throwaway programs” stating:

You know what a throwaway program is: something you write quickly for some
limited task. I think if you looked around you'd find that a lot of big, serious
programs started as throwaway programs. I would not be surprised if most
programs started as throwaway programs. And so if you want to make a
language that's good for writing software in general, it has to be good for
writing throwaway programs, because that is the larval stage of most software.

Thus ZeptoN is for the newb wanting to learn by doing, an experienced developer
writing a program to test a new idea, prototype a feature, or a technically savvy
person writing a program to help in their non-developer work.

May 2022 Page of 7 49

ZeptoN White Paper

2. ZeptoN Features

The ZeptoN programming language has the following features:

1. Simple
2. Minimal
3. Coherent
4. Compatible
5. Familiar
6. Sans Object
7. Robust
8. Secure
9. Architecture Aloof
10. Portable
11. Open

Simple

ZeptoN is simple, as there is only one necessary entity to learn to use the language—
the program structural entity. Writing a ZeptoN program uses the program entity
structure for all functionality.

Minimal

ZeptoN is a minimalist programming language by design. ZeptoN uses and builds
upon Java syntax, but only adds two keywords—prog for the program, and begin for
the central method of execution.

Coherent

ZeptoN is a coherent programming language--logical and consistent, clearly and
carefully designed. ZeptoN has the program entity, and also the predefined

May 2022 Page of 8 49

ZeptoN White Paper

environment but with the single criterion consistent with Java, and the inclusion of
Java features.

Compatible

ZeptoN is compatible with Java syntax completely and uses many commonly used
functions in packages as part of the predefined environment available to the user.
ZeptoN is also binary compatible the generated bytecode .class file will run on a Java
Virtual Machine on any platform.

Familiar

ZeptoN is familiar with the syntax used is the same as Java, and familiar to
programmers who have used C, C++, and C#. This familiarity allows easy learning for
an experienced developer, and easily transition to other programming languages,
obviously Java, for the newbie.

Object Optional

ZeptoN is an optional object, meaning that having to use object-oriented principles
or functionality such as a class, a constructor, access to a class, and so forth is optional
to write ZeptoN programs—if you want to use though, you can.

Robust

ZeptoN transcompiles into Java source code, which is then compiled into a
bytecode .class file. ZeptoN is strongly typed and checked by the underlying Java
compiler. Also, source code is woven into a ZeptoN program to catch and gracefully
handle errors and exceptions at runtime.

May 2022 Page of 9 49

ZeptoN White Paper

Secure

ZeptoN utilizes the bytecode verification and runtime management system to be
secure. This is done opaquely so the programmer does not have to worry about the
infamous bugs, glitches, and defects that have led to security holes in software.

Architecture Aloof

ZeptoN, building upon Java is architecture aloof. The software does not depend
exclusively on the features of the underlying hardware, so there is no “lock into” the
hardware, or operating system. A ZeptoN program can interoperate with other
platforms, systems, and servers completely unaware of the architecture details.

Portable

ZeptoN is portable as it uses the Java Virtual Machine and compiles it into a bytecode
.class file. Portability is also possible because ZeptoN is architecture-neutral, so can
work with other systems easily without being “ported” and updated to run, work, or
inter-operate with another system.

Open

In the ZeptoN programming language, the transcompiler is implemented in Java and
ZeptoN and is completely open. The source code is open source, the license is the
GNU Public License (GPL) version 3.0. Thus ambitious and smart developers can build
and tinker with the transcompiler.

May 2022 Page of 10 49

ZeptoN White Paper

3. The Program Entity

The only, and primary entity in ZeptoN is not a class or object, but a program. Other
entities can be declared and used, but the program is the primary entity—a unit of
execution, not re-use.

3.1 Program Entity

The program entity has only two aspects:

1. Program body to declare methods and attributes
2. Program block to declare statements in a central method of execution

3.1 Program Syntax Elements

There are three syntax elements of a program:

1. The program header declares the program with an identifier
2. Begin divider declares the executable source code
3. The program footer finishes the program declaration

The program entity syntax is:

 prog <IDENT> { //program header

 //PROGRAM_BODY

 begin {

 //PROGRAM_BLOCK

 }

 } //program footer

May 2022 Page of 11 49

ZeptoN White Paper

The program header begins the program, and the program footer closes the
program declaration and definition. The keyword “begin” separates or divides the
program body from the program block. The program body is optional, but the
program block is required in a ZeptoN program.

3.2 Program Body

The program body is two-fold around the program header. Before the program
header, a namespace can be declared, along with any packages or libraries included.
ZeptoN automatically includes some packages and libraries, so that they simply can
be used.

After the header is the program body where attributes and methods of the program
are declared. Attributes and methods that are elements of the program are essential
of two kinds:

1. Static - or singular, these program elements are singleton, stateless accessible
without a dynamic instance.

2. Non-static - or instance, these program elements are bound to a dynamic
instance that is created through which they are accessed.

3.2.1 Program Methods

Methods of a program are declared like C-style functions and are either static
(stateless) or non-static (instance) methods. The method declares a return type, or
void is followed by the method name and any parameters. Then within the opening
and closing braces are the program statements.

 void instanceFunc(parameters){
 //...statements

 }//end instanceFunc

May 2022 Page of 12 49

ZeptoN White Paper

The static method is declared similarly to an instance method, a C-style function but
with the keyword ‘static’ to indicate a static method.

 static void staticFunc(parameters){
 //...statements

 }//end staticFunc

3.2.2. Program Attributes

Attributes of the program are immutable constants and mutable variables. These
attributes are visible and accessible within the entire program—by program methods
and the program block.

3.2.2.1 Constants

A program constant is like a program method, in that there is a static and non-static
(instance) attribute. A constant is declared with the keyword "final" and then if static,
the keyword "static" followed by the type, the naming identifier, and the value for the
constant.

 final static double PI = 3.14159265358979323846;//constant immutable static

 final int ZERO = 0; //constant immutable instance

May 2022 Page of 13 49

ZeptoN White Paper

3.2.2.2 Variables

A program variable is like a program method, in that there is a static and non-static
(instance) variable. A static variable is declared with the keyword "static" before the
variable definition. A type followed by the naming identifier, and then an initial value
for the variable.

 static long totalValue = 0L;

 boolean isFileReady = false;

3.3 Program Block

The program block is declared and divided with the keyword "begin" which also
closes the program body.

The program block is the central nexus of execution, the program is executed starting
in the program block. The program block is like a static method, only declared
without a naming identifier, or any explicit parameters passed.

Within the program block, are the statements that are executed as the first method in
the program.

 begin {
 //statements

 }

 }//end prog

May 2022 Page of 14 49

ZeptoN White Paper

A program can have no program body and simply be a program block.

 prog <IDENT> {
 begin {
 //PROGRAM_BLOCK

 }//end begin

 }//end prog <IDENT>

Hence, it is very easy to implement and execute a quick-and-dirty ZeptoN program.

3.4 Classes

ZeptoN does not use classes, interfaces, or objects as a first-class entity in writing
source code. However, ZeptoN supports inner classes that can be declared and used
within a ZeptoN program for a more sophisticated user and much more complex
program. But ZeptoN is usable without any requirement for a class, interface, or
object.

May 2022 Page of 15 49

ZeptoN White Paper

4. ZeptoN Runtime

The ZeptoN runtime is a predefined environment as a set of imports, constants and
methods automatically provided as static, immutable methods. There are 76-
methods, 4-constants, 1-special constant variable, and 6-imports provided in the
runtime environment.

4.1 Imports

ZeptoN also automatically imports several Java packages by default. This allows the
user to use other standard packages from Java not provided explicitly as a method or
constant. The auto-magic imports are:

1. java.io — input/output
2. java.lang - the Java language infrastructure
3. java.math — mathematics
4. java.nio.charset - character sets
5. java.net — networking
6. java.util — utility and collections

4.1 Constants

There are four constants, three static, and one non-static (instance) immutable
variable.

4.1.1 Static Constants

ZeptoN provides three predefined static constants for readability:

1. EMPTY_CHAR — an empty char '' character.
2. EMPTY_STRING — an empty string "" of characters.
3. EOL — end of line or line separator string for the platform
4. NULL_CHAR — the '\0' null character.

May 2022 Page of 16 49

ZeptoN White Paper

4.1.2 Magical me

ZeptoN provides one predefined immutable or constant variable (an automatically
created instance reference to the program itself) as an immutable program block
constant using the identifier me.

The constant variable me represents a reference to the current instance of the
program within the program block. This allows access to all methods and attributes of
the program, but only in the program block. As the variable me is immutable, it
cannot be assigned to in the program block, nor accessed outside the program block.
An example illustrating the me constant instance variable is:

 prog badMagicalMe {
 begin {

 nop();

 me = EMPTY_STRING;

 exit(0);

 }//end begin

}//end prog badMagicalMe

When compiled the compiler output is:

 Error: badMagicalMe.java.
 Line 16 At 3: cannot assign a value to final variable me
 me = EMPTY_STRING;
 ^

 Error: badMagicalMe.java.
 Line 16 At 8: incompatible types
 me = EMPTY_STRING;
 ^

May 2022 Page of 17 49

ZeptoN White Paper

4.2 Methods

The methods are widely used in Java from different packages and libraries, only there
is no need to import, declare, and instantiate the packages and libraries. The methods
for input, output, and conversion to String are the most common predefined
methods:

 static void print(...)
 static void println(...)
 static void printf(...)
 static String toString(...)

 static String readLine()
 static char[] readPassword()
 static int readInt()

Others are platform and utility functions:

 static void gc()
 static void exit(...)
 static void arraycopy(...)
 static long nanoTime()
 static long freeMemory()
 static Console getConsole()

All of the methods are the same for the parameters and functionality of the methods
in the Java packages and libraries. Three ZeptoN specific methods in the predefined
environment are:

 static String[] getArgs();
 void errorf(...);
 void nop();

May 2022 Page of 18 49

ZeptoN White Paper

The method “getArgs()” gets the command-line arguments. The method “errorf()”
method prints to the error stream. The method “nop()” is a no-operation method for
an empty or nothing statement, instead of a simple, less explicit semicolon.

May 2022 Page of 19 49

ZeptoN White Paper

5. Example Programs

The syntax of exemplar programs illustrates the actual source code of ZeptoN.

5.1 Ubiquitous “Hello, World!!!”

The first six examples are the classic, and ubiquitous “Hello, World!!!” program. The
same program that prints “Hello, World!!!” Is implemented in six different ways to
illustrate the syntax and features of a ZeptoN program.

5.1.1 Simple Program

The simplest ZeptoN program has a program block is:

 prog helloWorld {
 begin {
 println("Hello, World!!!");

 exit(0);

 }

 }//end prog helloWorld

May 2022 Page of 20 49

ZeptoN White Paper

5.1.2 Program with Static

A more complex ZeptoN program has a static constant attribute, and a static method
to print the text of the “Hello, World!!!” output. The ZeptoN program with static
elements is:

 prog helloWorldWithStatic {

 final static String HELLO_WORLD = "Hello, World!!!";

 static void HelloWorld(){
 println(HELLO_WORLD);

 }//end HelloWorld

 begin {
 HelloWorld();

 exit(0);

 }//end begin

 }//end prog helloWorldWithStatic

5.1.3 Program with an Instance

A ZeptoN program with non-static (instance) elements of a constant attribute, and a
method is:

 prog helloWorldWithInstance {

 final String HELLO_WORLD = "Hello, World!!!";

 void HelloWorld(){
 println(this.HELLO_WORLD);
 }//end HelloWorld

 begin {
 me.HelloWorld(); //use predefined immutable instance variable ‘me’
 exit(0);

 }//end begin

 }//end prog helloWorldWithInstance

May 2022 Page of 21 49

ZeptoN White Paper

The ZeptoN program uses the predefined immutable variable “me” to access the
non-static method, which then accesses the static constant attribute.

5.1.4 Program with Class

A ZeptoN program using an internal, inner class uses the predefined immutable
variable “me” to instantiate the class, to invoke the method.

 prog helloWorldWithClass {

 class HelloWorldClass {
 void helloWorld(){
 println("Hello, World!!!”);

 }//end helloWorld

 }//end class helloWorldClass

 begin {
 helloWorldWithClass.helloWorldClass say = me.new helloWorldClass();
 say.HelloWorld();

 exit(0);

 }//end begin

 }//end prog helloWorldWithClass

May 2022 Page of 22 49

ZeptoN White Paper

5.1.5 Program with an Enumeration

A ZeptoN program using an internal, enumeration uses the values of the
enumeration.

 prog helloWorldWithEnum {

 enum GreetingHelloWorld {
 HELLO("Hello"), COMMA(","), WORLD("World"), BANG3("!!!");

 final String text;

 GreetingHelloWorld(String text) {

 this.text = text;
 }//end enum constructor

 }//end enum

 begin {

 for(GreetingHelloWorld sayGreeting : GreetingHelloWorld.values()){
 print(sayGreeting.text);

 if(sayGreeting != GreetingHelloWorld.HELLO)
 print(" ");

 }//end for

 println();

 exit(0);

 }//end begin

 }//end prog helloWorldWithEnum

May 2022 Page of 23 49

ZeptoN White Paper

5.1.6 Program using Static Array

A ZeptoN program with a non-static (instance) element of a constant attribute of an
array is:

 prog helloWorldWithStaticArray {

 final static String[] GREETING = { "Hello", ",", "World", "!!!" };

 begin {

 for(String greet : GREETING){
 print(greet);

 if(!greet.equals("Hello"))
 print(" ");

 }//end for

 println();

 exit(0);

 }//end begin

 }//end prog helloWorldWithArray

May 2022 Page of 24 49

ZeptoN White Paper

5.2 Medley of Examples

In this example, ZeptoN programs are a medley of different types illustrating the
source code, syntax, and structure of a ZeptoN program.

5.2.1 Mystery Program

The program “Mystery.zep” compiles and runs, but is a do-nothing program. The
question is why, and that is the mystery.

 prog Mystery {

 begin {

 nop();

 https://www.zepton.xyz

 exit(0);

 }//end begin

 }//end prog Mystery

The program “Mystery.zep” compiles and runs, as the obvious URL is a label and a
comment, therefore nothing in terms of statements of source code.

May 2022 Page of 25 49

ZeptoN White Paper

5.2.2 Convert Fahrenheit to Celsius

The simple program “ConvertFarenToCelsius.zep” converts temperatures from
Fahrenheit to Celsius from freezing to boiling.

 prog ConvertFarenToCelsius {
 final static double RATIO = 5.0d/9.0d;

 begin {
 int tempCelsius = 0;
 println("Fahrenheit Celsius");

 println("--------------------------------------");

 for(int tempFahren = 32; tempFahren <= 212; tempFahren++){
 tempCelsius = (int) (RATIO * ((double) (tempFahren - 32)));

 printf("%3d-degrees Fahren %3d-degrees Celsius%n", tempFahren, tempCelsius);

 }//end for

 println();

 exit(0);

 }//end begin

 }//end prog ConvertFarenToCelsius

5.2.3 Dummy Do-While Loop

The “dummy” do-while loop program “DummyDoWhileLoop.zep” creates a labeled
block using a do-while loop that executes only once. This allows for potential
branching to and from the label using a break or continue statement.

 prog DummyDoWhileLoop {

 begin {

 label: do { //execute do-while loop once
 nop();

 println("Inside dummy do-while loop.");

 } while(false);

 exit(0);

 }//end begin

 }//end prog DummyDoWhileLoop

May 2022 Page of 26 49

ZeptoN White Paper

5.2.4 Fetch Uniform Resource Locator (URL) Online

The program “FetchURL.zep” will fetch or retrieve the contents at a Uniform Resource
Locator (URL) and dump the contents to the console or terminal window.

 prog FetchURL {
 begin {

 final StringBuilder content = new StringBuilder(EMPTY_STRING);

 try {

 URL url = new URL("https://wgilreath.github.io/WillHome.html");
 URLConnection urlCon = url.openConnection();

 println(url.toString());

 BufferedReader reader = new BufferedReader(new
 InputStreamReader(urlCon.getInputStream()));

 String line = EMPTY_STRING;

 while((line = reader.readLine()) != null){
 content.append(line + "\n");

 }//end while

 println(content);

 buffered.close();

 }catch(Exception e) {
 e.printStackTrace();

 }//end try

 exit(0);

 }//end begin

 }//end prog FetchURL

May 2022 Page of 27 49

ZeptoN White Paper

5.2.5 Towers of Hanoi

Another example ZeptoN program is “TowersOfHanoi.zep” which illustrates recursion,
user input, and output in the classic programming problem. The implicit immutable
variable “me” is used to access the non-static instance attribute and method.

 prog TowersOfHanoi {

 int disks = -1;

 void hanoi(char src, char tmp, char dst, int n){
 if(n > 0){

 this.hanoi(src, tmp, dst, n-1);
 printf(" Move disk %d from peg %c to peg %c. %n", n, src, dst);

 this.hanoi(tmp, src, dst, n-1);
 }//end if

 }//end hanoi

 begin {

 print("Enter the number of disks: ");

 me.disks = readInt();
 println();

 println("Towers of Hanoi Solution: ");

 me.hanoi('A','B','C', me.disks);

 exit(0);

 }//end begin

 }//end prog TowersOfHanoi

May 2022 Page of 28 49

ZeptoN White Paper

5.2.6 N-Queens Problem

The N-queens problem is a classic problem in recursion and backtracking to solve the
problem of placing chess queens on an NxN chessboard so that no queen can attack
the other. The chessboard must be at least N = 4 for any possible solution to exist.

 prog NQueensProblem {

 int N = -1;

 void printSolution(int board[][]){
 printf("%nN = %d%n", board.length);

 print("--");

 for(int x=0;x<N;x++) print(“---");
 println();

 for(int i = 0; i < N; i++) {
 print("|");

 for(int j = 0; j < N; j++){
 if(board[i][j] == 0){
 printf(" _ ");

 } else
 printf(" Q ");

 }//end for

 print("|");

 println();

 }//end for

 for(int x=0;x<N;x++) print("---");
 print("--");

 println();

 }//end printSolution

 boolean isSafe(int board[][], int row, int col){
 int i, j;
 for(i = 0; i < col; i++)
 if(board[row][i] == 1) return false;
 for(i = row, j = col; i >= 0 && j >= 0; i--, j--)
 if(board[i][j] == 1) return false;
 for(i = row, j = col; j >= 0 && i < N; i++, j--)
 if(board[i][j] == 1) return false;
 return true;
 }//end isSafe

May 2022 Page of 29 49

ZeptoN White Paper

 boolean solveNQ(int board[][], int col){
 if(col >= N) return true;
 for(int i = 0; i < N; i++) {
 if(isSafe(board, i, col)) {
 board[i][col] = 1;

 if(solveNQ(board, col + 1)) return true;
 board[i][col] = 0;

 }//end if

 }//end for

 return false;
 }//end solveNQ

 boolean solveNQ(){
 int board[][] = new int[N][N];
 for(int x=0;x<N;x++){
 for(int y=0;y<N;y++){
 board[x][y] = 0;

 }//end for

 }//end for

 if(!solveNQ(board, 0)){
 print("Solution does not exist");

 return false;
 }//end if

 printSolution(board);

 return true;
 }//end solveNQ

 begin {

 for(int x=4;x<=10;x++) {
 me.N = x;
 me.solveNQ();
 }//end for

 exit(0);

 }//end begin

 }//end prog NQueensProblem

May 2022 Page of 30 49

ZeptoN White Paper

The ZeptoN program “NQueensProblem.zep” iterates from 4 to 10 for the size of N,
and computes the arrangement solution, which is then printed to the terminal or
console.

May 2022 Page of 31 49

ZeptoN White Paper

5.2.7 Gooey Hello

Another “Hello, World!!!” ZeptoN program uses the Java graphic user interface
library, JavaFX to create a window with the greeting, the Java runtime version, and the
JavaFX version.

 import javafx.application.Application;
 import javafx.scene.control.Label;
 import javafx.scene.layout.StackPane;
 import javafx.scene.Scene;
 import javafx.stage.Stage;

 prog HelloFXZeptoN {

 static class Window extends Application {

 @Override

 public void start(Stage stage) {

 String javaVer = getProperty("java.version");

 String javaFXVer = getProperty("javafx.version");

 Label label = new Label("Hello, World!!! from JavaFX " + javaFXVer
 + ", running on Java " + javaVer + ".");

 Scene scene = new Scene(new StackPane(label), 640, 480);
 stage.setScene(scene);

 stage.show();

 }//end start

 }//end class Window

 begin {

 Application.launch(Window.class, getArgs());

 }//end begin

 }//end prog HelloFXZeptoN

May 2022 Page of 32 49

ZeptoN White Paper

When run, the ZeptoN program “HelloFXZeptoN.zep” creates the following window
on the desktop as the screenshot illustrates:

The “HelloFXZepton.zep” demonstrates that ZeptoN can utilize the existing Java
libraries and packages. Creating an inner class with explicit accessible methods is
used, but ZeptoN, while “sans object” does not stop the user from using a class,
object-oriented features if they wish.

May 2022 Page of 33 49

HelloFXZepton.zep ZeptoN Program Running…

ZeptoN White Paper

5.2.8 Gooey Message Box Greeting

A more sophisticated example is the ZeptoN program “HelloWorldFX.zep” which
creates a pane with a button “Say ‘Hello World!!!.’

May 2022 Page of 34 49

ZeptoN White Paper

When the button is clicked it shows a message box with “Hello World!!!” but also
changes the button to “Exit.”

May 2022 Page of 35 49

ZeptoN White Paper

When the button is clicked, the ZeptoN program exits.

The screenshots show how a more complex event-handling visual program using
JavaFX is possible in ZeptoN.

May 2022 Page of 36 49

ZeptoN White Paper

The source code for “HelloWorldFX.zep” is:

 import javafx.application.*;
 import javafx.event.*;
 import javafx.scene.*;
 import javafx.scene.control.*;
 import javafx.scene.layout.*;
 import javafx.stage.*;

 prog HelloWorldFX {

 public static class Window extends Application {

 boolean buttonNoClick = true;

 @Override

 public void start(Stage primaryStage) {

 primaryStage.setTitle("Hello World App");

 Button btn = new Button();
 btn.setText("Say 'Hello World'");

 btn.setOnAction(new EventHandler<ActionEvent>(){

 @Override

 public void handle(ActionEvent event){

 if(buttonNoClick){
 buttonNoClick = false;
 btn.setText("Exit");

 } else {
 exit(0);

 }//end if

 Alert alert = new Alert(Alert.AlertType.INFORMATION);

 alert.setTitle("Hello World MessageBox");

 alert.setHeaderText(EMPTY_STRING);

 alert.setContentText("Hello, World!!!");

 alert.show();

 }//end handle

 });//end new EventHandler

May 2022 Page of 37 49

ZeptoN White Paper

 StackPane root = new StackPane();
 root.getChildren().add(btn);

 primaryStage.setScene(new Scene(root, 300, 250));
 primaryStage.show();

 }//end start

 }//end class HelloWorld

 begin {

 Application.launch(Window.class, getArgs());

 }//end begin

 }//end prog HelloWorldFX

The ZeptoN program “HelloWorldFX.zep” uses an internal class, and the JavaFX
package and library to create a simple graphic user interface program. Using
attributes and methods of the predefined environment simplifies the source code.

May 2022 Page of 38 49

ZeptoN White Paper

6. Future of ZeptoN

The future of the ZeptoN programming language is two-fold in the areas of:

1. Java
2. ZeptoN

The future of ZeptoN as ZeptoN builds on Java, follows Java as new features and
concepts are added, they are implicitly and automatically added to ZeptoN.

ZeptoN will also in and of itself, grow, and evolve. For example, new static attributes
and methods in the predefined environment can be added and removed depending
upon the community of ZeptoN users. Possibly standard, simpler packages and
libraries can be added and used as part of the ZeptoN predefined environment.

Both ZeptoN and Java will grow in tandem, the language becoming more
sophisticated with new features and capabilities over time.

May 2022 Page of 39 49

ZeptoN White Paper

7. Grammar

The ZeptoN programming language builds upon Java, with a program as the
structural entity, and a program block as the central point of execution. Thus ZeptoN
uses the Java grammar, but with the following modifications from the Java Language
Specification 14 [Orac 2020]. The modifications to the grammar are for the following
syntax rules:

 CompilationUnit:

 ProgramCompilationUnit

 ProgramCompilationUnit:

 [PackageDeclaration] {ImportDeclaration} ProgramDeclaration

 ProgramDeclaration:

 ProgDeclaration

 ProgDeclaration:

 prog TypeIdentifier ProgBody

 ProgBody:

 {ClassBodyDeclaration} begin ProgBlock

 ProgBlock:

 Block

 ;

 PrimaryNoNewArray:

 me
 Literal

 ClassLiteral

 this
 TypeName . this
 (Expression)

 ClassInstanceCreationExpression

 FieldAccess

 ArrayAccess

 MethodInvocation

 MethodReference

May 2022 Page of 40 49

ZeptoN White Paper

8. References

• [Grah 2001] Graham, Paul. "Five Questions about Language Design,”
https://www.paulgraham.com/langdes.html, May 2001, Accessed February 3, 2020.

• [Orac 2019] Oracle America, Inc., The Java Language Specification, 14th edition,
https://docs.oracle.com/javase/specs/jls/se14/jls14.pdf. Accessed March 22, 2020.

May 2022 Page of 41 49

ZeptoN White Paper

9. Predefined Environment

A list of the seventy-six predefined functions in the standard ZeptoN environment is
given in alphabetical order by method name. These methods are used in other
packages and libraries, but ZeptoN is consolidated as static methods available for use
without any need to import, instantiate etcetera.

1. void arraycopy(Object,int,Object,int,int)

2. int availableProcessors()

3. String clearProperty(String)

4. Console console()

5. long currentTimeMillis()

6. CharSet defaultCharSet()

7. void errorf(String,Object...) //ZeptoN specific

8. void exit(int)

9. String[] getArgs() //ZeptoN specific

10. String getenv(String)

11. Locale getLocale()

12. String getProperty(String)

13. Runtime getRuntime()

14. void gc()

15. long freeMemory()

16. void halt(int)

17. int identityHashCode(Object)

18. String lineSeparator()

19. long maxMemory()

20. long nanoTime()

21. void nop() //ZeptoN specific

22. void print(BigDecimal)

23. void print(BigInteger)

24. void print(boolean)

25. void print(byte)

26. void print(char)

27. void print(char[])

28. void print(double)

29. void print(float)

30. void print(int)

31. void print(long)

May 2022 Page of 42 49

ZeptoN White Paper

32. void print(Object)

33. void print(short)

34. void print(String)

35. void printf(String,Object...)

36. void println()

37. void println(BigDecimal)

38. void println(BigInteger)

39. void println(boolean)

40. void println(byte)

41. void println(char)

42. void println(char[])

43. void println(double)

44. void println(float)

45. void println(int)

46. void println(long)

47. void println(Object)

48. void println(short)

49. void println(String)

50. BigDecimal readBigDecimal()

51. BigInteger readBigInteger()

52. boolean readBoolean()

53. byte readByte()

54. char readChar()

55. double readDouble()

56. float readFloat()

57. int readInt()

58. String readLine(String,Object...)

59. String readLine()

60. long readLong()

61. char[] readPassword()

62. char[] readPassword(String,Object...)

63. short readShort()

64. String readString()

65. String setProperty(String,String)

66. long totalMemory()

67. String toString(boolean[])

68. String toString(byte[])

69. String toString(char[])

70. String toString(double[])

71. String toString(float[])

72. String toString(int[])

May 2022 Page of 43 49

ZeptoN White Paper

73. String toString(long[])

74. String toString(Object[])

75. String toString(short[])

76. String valueOf(char[])

This list of function methods includes the three ZeptoN-specific methods and the
other methods found in Java packages. Over time the predefined environment will
change, with new methods and attributes added, and others deprecated.

May 2022 Page of 44 49

ZeptoN White Paper

Get the ZeptoN Compiler

The ZeptoN “project site is on GitHub at: https://wgilreath.github.io/ZeptoN/

Downloads

The ZeptoN “Echo” transcompiler, source code editor Zeptor, and ZeptoN code
examples, are available for download from the following links:

1. Zeptor the ZeptoN Code Editor

• https://bit.ly/2K9RfAM (v.1.3.3)

2. ZeptoN Code Editor in Action Video (with zither music)

• https://bit.ly/2xf4ddJ (Youtube! video of my code editor)

3. ZeptoN Code Examples

• https://bit.ly/3ebLSiF

4. ZeptoN "Echo" Compiler Binary

• https://github.com/wgilreath/ZeptoN/raw/master/ZepC.jdk8.jar

5. ZeptoN "Echo" Compiler Source Code

• https://wgilreath.github.io/ZeptoN/ZepC.java

The author and creator of ZeptoN welcome feedback, comments, and questions!

May 2022 Page of 45 49

ZeptoN White Paper

About the Author

I am a developer, computer scientist, and writer with many years of development
experience. I program in Java for work and fun.

My home site about me is https://www.wfgilreath.xyz/. I describe myself as: a writer
of code, equations, poems, text, and a lover of cats. He can be reached online at
will@wfgilreath.xyz by e-mail.

May 2022 Page of 46 49

Me, Myself, and I—Your Author’s Picture

https://www.wfgilreath.xyz

ZeptoN White Paper

Copyright

This white paper is Copyright © May 2022 by William F. Gilreath. All Rights Reserved.

License

The license for this white paper is the Creative Commons Attribution-ShareAlike 4.0
International. Please feel free to share, print, and re-gift this white paper, ad nauseam.

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

This is a human-readable summary of (and not a substitute for) the license.

You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but
not in any way that suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

May 2022 Page of 47 49

ZeptoN White Paper

Notices:

You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity, privacy,
or moral rights may limit how you use the material.

Online:

This summary license and the full license is available online, respectively at:

• https://creativecommons.org/licenses/by-sa/4.0/

• https://creativecommons.org/licenses/by-sa/4.0/legalcode

May 2022 Page of 48 49

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

ZeptoN White Paper

Credits

• The first-page photo by Kevin Ku from Pexels. Downloaded April 8, 2020.
https://www.pexels.com/photo/coding-computer-data-depth-of-field-577585/

May 2022 Page of 49 49

	1. Introduction
	2. ZeptoN Features
	3. The Program Entity
	4. ZeptoN Runtime
	5. Example Programs
	6. Future of ZeptoN
	7. Grammar
	8. References
	9. Predefined Environment
	Get the ZeptoN Compiler
	About the Author
	Copyright
	License
	Credits

